Discretization Error Analysis for Tikhonov Regularization

نویسندگان

  • Ernesto De Vito
  • Lorenzo Rosasco
چکیده

Received (Day Month Year) Revised (Day Month Year) We study the discretization of inverse problems defined by a Carleman operator. In particular we develop a discretization strategy for this class of inverse problems and we give a convergence analysis. Learning from examples as well as the discretization of integral equations can be analysed in our setting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discretization Error Analysis for Tikhonov Regularization in Learning Theory

We study the connections between learning from examples and inverse problems. We show that learning from examples can be seen as the discretization of a stochastic inverse problem defined by a Carleman operator. In particular we develop a discretization strategy for this class of inverse problems and we give a convergence analysis. Our approach can be applied to other classes of problems such a...

متن کامل

On the Choice of the Tikhonov Regularization Parameter and the Discretization Level: A Discrepancy-Based Strategy

We address the classical issue of appropriate choice of the regularization and discretization level for the Tikhonov regularization of an inverse problem with imperfectly measured data. We focus on the fact that the proper choice of the discretization level in the domain together with the regularization parameter is a key feature in adequate regularization. We propose a discrepancy-based choice...

متن کامل

Adaptive discretizations for the choice of a Tikhonov regularization parameter in nonlinear inverse problems

Parameter identification problems for partial differential equations usually lead to nonlinear inverse problems. A typical property of such problems is their instability, which requires regularization techniques, like, e.g., Tikhonov regularization. The main focus of this paper will be on efficient methods for determining a suitable regularization parameter by using adaptive finite element disc...

متن کامل

Adaptive regularization and discretization of bang-bang optimal control problems

In the article, Tikhonov regularization of control-constrained optimal control problems is investigated. Typically the solutions of such problems exhibit a so-called bang-bang structure. We develop a parameter choice rule that adaptively selects the Tikhonov regularization parameter depending on a-posteriori computable quantities. We prove that this choice leads to optimal convergence rates wit...

متن کامل

Tikhonov Regularization by a Reproducing Kernel Hilbert Space for the Cauchy Problem for an Elliptic Equation Tikhonov Regularization by a Reproducing Kernel Hilbert Space for the Cauchy Problem for an Elliptic Equation

We propose a discretized Tikhonov regularization for a Cauchy problem for an elliptic equation by a reproducing kernel Hilbert space. We prove the convergence of discretized regularized solutions to an exact solution. Our numerical results demonstrate that our method can stably reconstruct solutions to the Cauchy problems even in severe cases of geometric configurations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005